ISOTHERMAL DYNAMICS OF SORPTION IN POROUS
MEDIA FOR A NONLINEAR ISOTHERM

L, K. Tsabek UDC 541.183

The invariant solutions of the equations of sorption dynamics are obtained in the externally
diffusive kinetic range for an s-type isotherm.

The isothermal dynamic characteristics of sorption in porous, nondeformable media may be de-
scribed in the externally diffusive kinetic range by the material~balance equation (allowing for longitudinal
mixing), the equation of externally diffusive sorption kinetics in porous grains, and the initial and boundary
conditions:

dc , 0g d% oq

T = ] =C— 3 = -11 a’+ = l, 1
> 5 7 V5 @, o= Y 1)
. z shh(p, —2) 1 o .
cg,sozcoexp(\ o ) sh;»bo , h= 52 1+4-—Y- y Gleo =0,

Clo=d = €y Glamo =H (#), 0 L2 b, @)

The numerical method of solving system (1) was considered in [1]. The same paper gave an implicit itera-
tive difference scheme of the second order of accuracy, and also the necessary and sufficient conditions
for the absolute stability and convergence of the implicit iterative difference scheme for an arbitrary non-
linear sorption isotherm. The system of quasilinear equations (1) for a convex isotherm allows an invari-
ant solution [2], corresponding to the traveling-wave condition (stationary leading edge). From physical
considerations regarding the monotonic fall in the function ¢, g we may find the following condition for the
convexity of the sorption isotherm under traveling-wave conditions: ‘
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It was shown in [1] that an isotherm lying above the straight line joining the origin of the curve (f(c),
co) (c® is the initial equilibrium concentration) to the end of the curve (f(cy), ¢y}, (¢ is the final maximum
equilibrium concentration) satisfies Eq. (3) and is thus a convex isotherm. In the particular case of c’=0,

- £(c% =0, ¢;=1, f(cy) =1 the convex isotherm lies above the straight
line connecting the beginning and end of the curve (0, 0) and (1, 1).
/ﬁ In Fig. 1 the convex isotherms lie in a region bounded by a triangle
97 > with coordinates 0, g =1, 1. At first glance it might seem that we
Vs }// should have to regard functions lying below the straight line connec-
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yd ting the initial and final points of the curve ((c%), c% and (f(cy), cp)
990 i as concave isotherms f, The isotherm 1 in Fig. 1, in particular,
A ___/_{_//( may be regarded as concave and isotherm 2 as convexo-concave.
e e e However, detailed analysis shows that the concept of a concave iso-
Nz Vl/ /£ | therm for externally diffusive sorption kinetics has to be determined
7 ﬁ/ | f in a different way from the concept of a convex isotherm. A concave
, ot prr— L rra— isotherm is, in fact, one for which d*(c)/dc? >0 in the range c’<c=<
' cg. According to this definition, the isotherms 1 and 2 in Fig. 1 will
Fig. 1. Sorption isotherms. " be convexo-concave, The convex region of the isotherms occurs for
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Fig. 2. Frontal dynamic curves for an s-shaped isotherm
p=9, b=0.9) (@) and for an s-shaped isotherm (p=10.3,
b=0.8) {b).

0 = ¢ = cx (ce is the point of intersection of the isotherm with the tangent arising from the origin of coor-
dinates). For c* =< c=1 the condition d*f/dc? >0 is satisfied, and in this region the isotherm will be con-

cave. In the appendices of [3] such convexo-concave isotherms are called s-type, and are often described
by the BET equation
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For the convex part of the isotherm we have a traveling-wave mode described by the invariant solution
y=z — wtiw=(cx — )@+ — a1, g« =f(cy)). In the region of the convex part of the isotherm 0= ¢ = cx
we may write the system (1) in the following way: ’
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In order to integrate the system (5), we divide the second equation of (5) by the first,
dc
dg
The resultant Eq, (6) may be integrated numerically by the Runge—Kutta method, from which we obtain
the relationship c=Fy(q). Allowing for this relationship, the second equation of (5) has the form

= vw (c—wg) & p(g) — ™, 0 < g <y (6)
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Integrating Eq. (7) we obtain
1
q(y) = H "y — o), H(9) =5Y7I(p(q)~Fo(4)l“1a¢ ®)

We find the integration constant y, from the integrated form of the material-balance equation (1). After
certain transformations we obtain
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In the region of the concave isotherm cy =< c = ¢;, system (1) may only be integrated numerically with
the aid of an electronic computer if @ #y =0. However, for large values of the time t = t4(z = z«) the shape
of the spreading frontal dynamic curve in the region of the concave isotherm is largely determined by the
curvature of the isotherm, since its spreading attributable to the curvature will be greater than its spread-
ing attributable to the finite velocity of the externally diffusive mass transfer ¢y =0) and the finite velocity
of effective longitudinal mixing @ =#0). The value of t, (and, correspondingly, z«)depends on the shape of
the concave region of the sorption isotherm. Allowing for the foregoing discussion, when t= tx(z = zx)
the system of equations (1) transforms into the following form for the concave part of the isotherm:
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For the concave part of the isotherm (d*f/dc? >0) the hyperbolic system (10) allows an invariant solution
y =z/t, which after certain transformations may be written in the form
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It is interesting to compare the analytical invariant solutions (11) with the exact numerical solutions of the
system (1). By way of example we applied a BESM-6 computer to the isotherms 1 and 2 (Fig. 1) and nu-
merically integrated the system of equations (1)-(2) for the following values of the parameters: ¢ 0=, cp=1,
by=180, @ =y =0.5, h=0.06, 7=0.03. The results of the integration are indicated by the continuous lines
for the isotherm 1 in Fig. 2a, and for the isotherm 2 in Fig. 2b (0)t=0, 1) t=5, 2) 10, 3) 20, 4) 30, 5) 40,
6) 50). The invariant solutions are shown as circles in the figure. Figure 1 illustrates the s-shaped iso-
therms (4): isotherm 1 for the parameters p=9, b=0.9, cx=0.5, g« =0.165, isotherm 2 for the parameters
p=10.3, b=0.8, cx=0.575, g% =0,348. For the convex part of the isotherm in the region 0 < ¢ < ¢, the
invariant solutions are found by integrating Egs. (6), (8), and (9). In the region cx = ¢ =1 the invariant
solutions for the concave part of the isotherm are found from Egs. (11). It follows from an analysis of

the results presented in Fig. 2a and b that the frontal dynamic curves for the s-shaped isotherm may be
described to a satisfactory accuracy by invariant solutions y =z — wi in the region of the convex part of

the isotherm, in accordance with Eqs. (6), (8), and (9), and invariant solutions y =z/t in the concave part
of the isotherm, in accordance with Eqs. (11). '

In the absence of longitudinal mixing @ =0) and for an infinitely high rate of mass transfer ¢ =0) the
system of equations (1) transforms into the limiting equation (10) or the limiting equation
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The system of equations (1) has a continuous solution, while the limiting equations (10) and (12) for the con-
vex function f (concave ¢) have a discontinuous solution. The existence and uniqueness of the generalized
discontinuous solutions of the hyperbolic equation (12) were proved in 4] for R >0, The construction of
generalized discontinuocus solutions for an arbitrary function R was considered in [5]. However, the
generalized discontinuous solutions have to be considered as a limiting case of the continuous solutions

of (8) for a=y =0,
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NOTATION

¢, concentration of the sorbed gas (liquid) in the filtration flow; q, concentration of the absorbed sub-
stance; o, relative coefficient of longitudinal mixing; v, relative kinetic coefficient; f, ¢, functions describ-
ing the forward and reverse sorption isotherms; h, 7, coordinate and time steps, respectively.
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