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The invar iant  solutions of the equations of sorpt ion dynamics  a re  obtained in the ex te rna l ly  
diffusive kinet ic  range  for an s - type  i so the rm.  

The i so the rma l  dynamic c h a r a c t e r i s t i c s  of sorpt ton in porous,  nondeformable  media  m a y  be de -  
scr ibed  in the ex terna l ly  diffusive kinetic range  by the ma te r i a l - ba l ance  equation (allowing for longitudinal 
mixing),  the equation of ex te rna l ly  diffusive sorpt ion kinet ics  in porous  gra ins ,  and  the initial and boundary 
conditi ons: 
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The numer i ca l  method of solving sys t em (1) was considered in [1]. The same paper  gave an impl ic i t  i t e r a -  
t ive d i f ference  scheme of the second order  of accuracy ,  and a l so  the n e c e s s a r y  and sufficient conditions 
for  the absolute  s tabi l i ty  and convergence  of the impl ic i t  i te ra t ive  di f ference scheme for an a r b i t r a r y  non-  
l inear  sorpt ion  i s o t h e r m .  The sys t em of quas t l tnear  equations (1) for a convex i so the rm allows an i n v a r i -  
ant solution [2], cor responding  to the t rave l ing-wave  condition (stat ionary leading edge).  F r o m  physical  
cons idera t ions  r ega rd ing  the monotonic fall in the function c, q we may  find the following condition for the 
convexity of the sorpt ion i so therm under  t rave l ing-wave  conditions: 

w ( q - - r  + c ~  w = (c o --c~ _ r  (3) 

I t  was shown in [1] that an i so the rm lying above the s t ra ight  line joining the origin of the curve  (f(c~ 
e ~ (c ~ is the initial equi l ibr ium concentration) to the end of the curve if(c0), c0), (c 0 is the final maximum" 
equi l ibr ium concentrat ion) sa t i s f i e s  Eq.  (3) and is  thus a convex i so the rm.  In the par t i cu la r  case  of c~  

f(c ~ =0, c0= l ,  f(c0) =1 the convex i so the rm l ies  above the s t ra ight  
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Fig .  1. Sorption i s o t h e r m s .  

line connecting the beginning and end of the curve (0, 0) and (1, 1). 
In Fig .  1 the convex i so the rms  lie in a region bounded by a t r iangle  
with coordinates  0, q = l ,  1. At f i r s t  glance it might  s e e m  that  we 
should have to r ega rd  functions lying below the s t ra ight  line connec-  
t ing the initial and final points of the curve (f(c~ c e) and if(co), co) 
as eoneave i so the rms  f .  The i so therm 1 in Fig.  1, in pa r t i cu la r ,  
m a y  be r ega rded  as  concave and i so the rm 2 as  eonvexo-concave .  
However ,  detailed ana lys i s  shows that the concept of a concave i so -  
t h e r m  for  ex te rna l ly  diffusive Sorption k-tnetics has to be de te rmined  
in a different  way f r o m  the concept of a convex i s o t h e r m .  A concave 
i so the rm is,  in fact ,  one for  which d2f(e)/dc 2 > 0 in the range  cO___ c _  
c 0. According to this definition, the i so the rms  1 and 2 in Fig .  1 will 
be eonvexo-concave .  The convex region of the i so the rms  occurs  for 

I .  M. Gubktn Inst i tute of the P e t rochemica l  and Gas Industry ,  Moscow. Trans la ted  f rom Inzhenerno-  
Fiz icheskt i  Zhurnal ,  Vol.  28, No. 6, pp.  1071-1075, June, 1975. Original a r t i c l e  submit ted Apri l  22, 
1974. 

019 76 Plenum Publishing Corporation, 22 7 West 17th Street, New York, N. Y. 10011. No part o f  this publication may be reproduced, 
stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, mierofilming, 
recording or otherwise, without written permission of  the publisher. A copy o f  this article is available from the publisher for $15.00. 

771 



' a 

q 
k 
' r ! 

/ i  

0 #0  8 O  /2O z 

0 

0 2g 4~ ~ z 

Fig.  2. Frontal  dynamic curves  for an s-shaped isotherm 
(p =9, b =0.9) (a) and for an s-shaped isotherm (p=10.3 ,  
b=0 .8 )  {b). 

0 _ c - c .  (c, is the point of intersect ion of the i sotherm with the tangent ar is ing f rom the origin of coo r -  
dinates).  For  c* -< c<- i the condition d2f/de 2 >0 is satisfied, and in this region the i sotherm will be con-  
cave.  In the appendices of [3] such convexo-concave i so therms are  called s- type,  and are  often described 
by the BET equation 

q =  ( t - - b ) ( l  ~ p ) c ,  0 ~ q ~ l , .  0 ~ c ~ . l .  
(1 bc)(1 + pc) (4) 

For  the convex par t  of the i so therm we have a t ravel ing-wave mode descr ibed by the invar iant  solution 
y =z -- wt (w=(c .  -- c~ (q. -- q0)-l, q .  =f(c.)) .  In the region of the convex par t  of the isotherm 0 _ c _< c .  
we may write the sys tem (1) in the following way: 

dq 
c - - w q = ( z ~ ,  - -Tw = c - - ~ ( q ) ,  w = c . / q . ,  c ~ 

dg dy (5) 

In order  to integrate the system (5), we divide the second equation of (5) by the f i rs t ,  

dc 
- -  = 7 w  (c - -  wq) a -1 [9  (q) - -  c] -x,  0 ~ q ~ q , .  (6) 

dq 

The resu l taa t  Eq.  (6) may be integrated numericaUy by the Runge-Kut t a  method, f rom which we obtain 
the relat ionship c=F0(q).  Allowing for  this relat ionship,  the second equation of (5) has the form 
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In tegra t ing  Eq.  (7) we obtain 

dq 
- -  .~,w = Fo (q) - -  ~ (q). (7)  

dg 

f _  1 I(~(q)--F0(q)l-~aq. (8) q (~) ~-~ H- 1 (y _ V0), H (q) = ~,w 

We find the in tegrat ion constant  Y0 f r o m  the integrated fo rm of the ma t e r i a l - ba l ance  equation (1). After  
cer ta in  t r an s fo rm a t i ons  we obtain 

q,  

Yo = - -  H (q) dq + a [1 - -  c (O)/c,]. (9) 
0 

In the region of the concave i so the rm c ,  -< c _<_ c 0, sy s t em (1) may  onty be integrated numer ica l ly  with 
the aid of an e lec t ron ic  computer  i f~  s~, s 0 .  However ,  for la rge  values of the t ime t_> t , ( z  _> z , )  the shape 
of the spreading  frontal  di~aamic curve in the region of the concave i so the rm is l a rge ly  de te rmined  by the 
curva ture  of the i so the rm,  since i ts  spreading  a t t r ibutable  to the curva ture  will be g r ea t e r  than its sp r ead -  
ing a t t r ibutable  to the finite veloci ty  of the ex te rna l ly  diffusive m a s s  t r an s f e r  (y s0)  and the finite veloci ty  
of effect ive  longitudinal mixing (~ s 0 ) .  The value of t ,  (and, correspondingly ,  z , ) depends  on the shape of 
the concave region of the sorpt iou i s o t h e r m .  Allowing for the foregoing discussion,  when t_> t ,  (z >_ z , )  
the sys t em of equations (1) t r a n s f o r m s  into the following fo rm for  the concave par t  of the i so therm:  

Oc Oq + = 0 ,  clt=o=c ~ q=~(c).  (10) 
Oz Ol 

For  the concave p a r t  of the i so the rm (d2f/dc 2 > 0) the hyperbol ic  sys tem (10) al lows an invar tant  solution 
y =z / t ,  which af ter  ce r t a in  t r ans fo rma t ions  may  be wri t ten in the fo rm 

( 

q = [ (c), c (z, t) = i c~ ' zl '~ z ~ z~, z 2 = t (11) 

I d f  [c., z>z.,  F-I(c)= 
d-~ 

% 

It  is in teres t ing  to compare  the analyt ical  invar tant  solutions (11) with the exact  numer i ca l  solutions of the 
sy s t em (1). By way of example  we applied a BF, SM-6 computer  to the i so the rms  1 and 2 (Fig. 1) and nu-  
m e r i c a l l y  in tegra ted  the s y s t em  of equations (1)-(2) for  the following values of the p a r a m e t e r s :  c o-- 0, c o =1, 
b0=180 , ~ = y = 0 . 5 ,  h = 0 . 0 6 ,  ~-=0.03. The r e su l t s  of the integrat ion a r e  indicated by the continuous l ines 
for  the i so the rm 1 in Fig.  2a, and for the i so the rm 2 in Fig.  2b ( 0 ) t=0 ,  1) t = 5 ,  2) 10, 3) 20, 4) 30, 5) 40, 
6) 50) .  The invar iant  solutions a r e  shown as  c i r c l e s  in the f igure .  F igure  1 i l lus t ra tes  the s - shaped  i s o -  
t h e r m s  (4): i so the rm 1 for the p a r a m e t e r s  p = 9 ,  b = 0 . 9 ,  c .  =0 .5 ,  q ,  =0.165,  i so the rm 2 for  the p a r a m e t e r s  
p = 1 0 . 3 ,  b = 0 . 8 ,  c ,  =0.575,  q ,  =0 .348.  For  the convex pa r t  of the i so the rm in the region 0_< c_< c ,  the 
invar iant  solutions a r e  found by integrat ing E q s .  (6), (8), and (9). In the reg ion  c .  --- c _< I the invar iant  
solutions for the concave par t  of the i so the rm a re  found f rom E q s .  (11). It  follows f rom an ana lys i s  of 
the r e su l t s  p resen ted  in Fig .  2a and b that the frontal  dynamic cu rves  for the s - shaped  i so the rm may  be 
descr ibed  to a s a t i s f ac to ry  accu racy  by invar iant  solutions y =z -- wt in the region of the convex pa r t  of 
the i so the rm,  in accordance  with E q s .  (6), (8), and (9), and invar iant  solutions y = z / t  in the concave pa r t  
of the i so the rm,  in accordance  with Eqs .  (11). 

In the absence  of longitudinal mixing (~ =0) and for  an infinitely high ra t e  of m a s s  t r an s f e r  6/=0) the 
sy s t em of equations (1) t r a n s f o r m s  into the l imit ing equation (10) or  the l imit ing equation 

O_~q + O~(q______~) = 0 ,  R ( q ) -  d~(p (12) 
at az dq ~ 

The sy s t em of equations (1) has  a continuous solution, while the l imit ing equations (10) and (12) for  the con-  
vex function f (concave q~) have a discontinuous solut ion.  The exis tence and uniqueness of the genera l ized 
discontinuous solutions of the hyperbol ic  equation (12) were  proved in [4] for  R >0 .  The construct ion of 
genera l ized  discontinuous solutions for  an a r b i t r a r y  function R was considered in [5]. However ,  the 
genera l ized  discontinuous solutions have to be considered as  a l imit ing case  of the continuous solutions 
of (8) for  ~ =~, = 0. 
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NOTA TION 

c, concentration of the sorbed gas (liquid) in the filtration flow; q, concentration of the absorbed st~b- 
stance; a, relative coefficient of longitudinal mixing; 7, relative kinetic coeffictent; f, r functions describ- 
ing the forward and reverse sorption isotherms; h, T, coordinate and time steps, respectively. 
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